22 research outputs found

    On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks

    Get PDF
    Mixup~\cite{zhang2017mixup} is a recently proposed method for training deep neural networks where additional samples are generated during training by convexly combining random pairs of images and their associated labels. While simple to implement, it has shown to be a surprisingly effective method of data augmentation for image classification; DNNs trained with mixup show noticeable gains in classification performance on a number of image classification benchmarks. In this work, we discuss a hitherto untouched aspect of mixup training -- the calibration and predictive uncertainty of models trained with mixup. We find that DNNs trained with mixup are significantly better calibrated -- i.e., the predicted softmax scores are much better indicators of the actual likelihood of a correct prediction -- than DNNs trained in the regular fashion. We conduct experiments on a number of image classification architectures and datasets -- including large-scale datasets like ImageNet -- and find this to be the case. Additionally, we find that merely mixing features does not result in the same calibration benefit and that the label smoothing in mixup training plays a significant role in improving calibration. Finally, we also observe that mixup-trained DNNs are less prone to over-confident predictions on out-of-distribution and random-noise data. We conclude that the typical overconfidence seen in neural networks, even on in-distribution data is likely a consequence of training with hard labels, suggesting that mixup training be employed for classification tasks where predictive uncertainty is a significant concern

    Federated Representation Learning for Automatic Speech Recognition

    Full text link
    Federated Learning (FL) is a privacy-preserving paradigm, allowing edge devices to learn collaboratively without sharing data. Edge devices like Alexa and Siri are prospective sources of unlabeled audio data that can be tapped to learn robust audio representations. In this work, we bring Self-supervised Learning (SSL) and FL together to learn representations for Automatic Speech Recognition respecting data privacy constraints. We use the speaker and chapter information in the unlabeled speech dataset, Libri-Light, to simulate non-IID speaker-siloed data distributions and pre-train an LSTM encoder with the Contrastive Predictive Coding framework with FedSGD. We show that the pre-trained ASR encoder in FL performs as well as a centrally pre-trained model and produces an improvement of 12-15% (WER) compared to no pre-training. We further adapt the federated pre-trained models to a new language, French, and show a 20% (WER) improvement over no pre-training.Comment: Accepted at ISCA SPSC Symposium 3rd Symposium on Security and Privacy in Speech Communication, 202

    BB-ML: Basic Block Performance Prediction using Machine Learning Techniques

    Full text link
    Recent years have seen the adoption of Machine Learning (ML) techniques to predict the performance of large-scale applications, mostly at a coarse level. In contrast, we propose to use ML techniques for performance prediction at a much finer granularity, namely at the Basic Block (BB) level, which are single entry, single exit code blocks that are used for analysis by the compilers to break down a large code into manageable pieces. We extrapolate the basic block execution counts of GPU applications and use them for predicting the performance for large input sizes from the counts of smaller input sizes. We train a Poisson Neural Network (PNN) model using random input values as well as the lowest input values of the application to learn the relationship between inputs and basic block counts. Experimental results show that the model can accurately predict the basic block execution counts of 16 GPU benchmarks. We achieve an accuracy of 93.5% in extrapolating the basic block counts for large input sets when trained on smaller input sets and an accuracy of 97.7% in predicting basic block counts on random instances. In a case study, we apply the ML model to CUDA GPU benchmarks for performance prediction across a spectrum of applications. We use a variety of metrics for evaluation, including global memory requests and the active cycles of tensor cores, ALU, and FMA units. Results demonstrate the model's capability of predicting the performance of large datasets with an average error rate of 0.85% and 0.17% for global and shared memory requests, respectively. Additionally, to address the utilization of the main functional units in Ampere architecture GPUs, we calculate the active cycles for tensor cores, ALU, FMA, and FP64 units and achieve an average error of 2.3% and 10.66% for ALU and FMA units while the maximum observed error across all tested applications and units reaches 18.5%.Comment: Accepted at the 29th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2023

    ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale

    Full text link
    Incremental learning is one paradigm to enable model building and updating at scale with streaming data. For end-to-end automatic speech recognition (ASR) tasks, the absence of human annotated labels along with the need for privacy preserving policies for model building makes it a daunting challenge. Motivated by these challenges, in this paper we use a cloud based framework for production systems to demonstrate insights from privacy preserving incremental learning for automatic speech recognition (ILASR). By privacy preserving, we mean, usage of ephemeral data which are not human annotated. This system is a step forward for production levelASR models for incremental/continual learning that offers near real-time test-bed for experimentation in the cloud for end-to-end ASR, while adhering to privacy-preserving policies. We show that the proposed system can improve the production models significantly(3%) over a new time period of six months even in the absence of human annotated labels with varying levels of weak supervision and large batch sizes in incremental learning. This improvement is 20% over test sets with new words and phrases in the new time period. We demonstrate the effectiveness of model building in a privacy-preserving incremental fashion for ASR while further exploring the utility of having an effective teacher model and use of large batch sizes.Comment: 9 page
    corecore